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The potential function of some molecules of type XHa has been obtained by a priori
calculations of the total energy, within the Born Oppenheimer approximation, for several
geometrical configurations. These functions have been used to calculate the simply excited
vibrational levels. The calculated values of the electric dipole moment for the different geo-
metrical configurations has enabled the computation of its derivative with respect to the
nuclear coordinates. The results reported are critically discussed and some explanations are
presented to justify the discrepancies found with the experimental data.

La fonction potentiel de quelques molécules XHn a été obtenue par le calcul a priori de
I’énergie moléculaire, dans I'approximation de Born et Oppenheimer, pour plusieures confi-
gurations géométriques. Ces fonctions ont été utilisées pour calculer les vibrations mono-
excitées. Les valeurs calculées du moment de dipole électrique pour différentes configurations
donnent la possibilité de calculer ses dérivées par rapport aux coordonées nucléaires. On
donne des justifications a 'accord peu satisfaisant entre les résultats et I’expérience.

Mittels einer apriorischen Berechnung der Gesamtenergie nach der Born-Oppenheimer-
Methode ist die Potentialfunktion fiir einige Molekiile der Art XH in verschiedenen Konfigu-
rationen erhalten worden. Diese Funktionen sind fiir die Berechnung der monoerregten
Schwingungszustinde gebraucht worden. Die berechneten Werte des elektrischen Dipol-
moments fir verschiedene Geometrien haben die Berechnung der Ableitungen des Dipol-
moments nach den Kernkoordinaten erlaubt. Die erhaltenen Resultate werden diskutiert und
einige Erklirungen vorgefithrt, um die gefundenen Unterschiede von den experimentellen
Ergebnissen zu kldren.

I. Introduction

A priori calculation of vibrational spectra of molecules within the framework
of the Born Oppenheimer approximation involves, among other things, the compu-
tation of the electronic molecular energies. This is certainly the most troublesome
part of the calculation because it is not clear how the several approximations
necessarily made at this stage will affect the final results. Naturally the effect of
the other approximations is considered negligible in comparison, as it is well
known and accurate calculations have shown [12].

The results which have appeared in the literature so far are not very extensive.
Bisuor et al. [4, 6] considered some of the molecules we treated, by a method
similar to ours, but only for a particular nuclear distortion, i. e. that of the
“breathing” frequency which in general does not correspond to any normal mode.
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On the other hand BraToz et al. [7] treated a few molecules for all their vibra-
tional modes but by a completely different and considerably simpler approach.

In our investigation the electronic energy for several nuclear arrangements
was obtained by the OCE SCF MO method which was already described by one of
us [19]. Therefore here we will give only a very brief description of it referring to
those papers [19, 20, 21] for further details. In addition, the expectation value of
the electric dipole moment was calculated also. These data were employed to
evaluate, in a purely theoretical way, the vibrational spectrum of the following
molecules:

HF, HCl, 1,0, H,8, NH,, PH,, CH,, SiH,, NH}, PH; .

For the NH] and PHJ ions only the breathing vibration was considered which in
these cases coincides with a normal mode.

I1. Summary of the Method

To evaluate the expectation value of the electronic energy the wave function
was approximated by a single detor of MO’s each expressed as a linear combination
of Slater type functions all centered upon the heavy nucleus. The coefficients of
these linear combinations were determined by Roothaan SCF procedure. This
method has been shown to be capable of giving satisfactory results for the XHy
type of molecules once enough basis functions are employed. As described in [19]
the computations were carried out for several nuclear arrangements, which
permitted the determination of the equilibrium configurations. A rather critical
point concerns the choice of the orbital exponents £, which in principle should be
different for each nuclear configuration. But, the optimization of the {’s for each
geometry being out of question because of the exceedingly great computer time
needed, the {’s were kept fixed and equal to those of the theoretical equilibrium
configuration*.

Once the total energy being obtained for several sets of internal coordinates, it
was an easy matter to derive an analytical expression for the potential energy. The
most natural way is to use a power expansion around the minimum, or a point
very close to it, as in fact has been done. The expansion points we have taken
correspond to the lowest values of the energies which were obtained in the quoted
investigations [19, 20, 21]. The power series, in terms of convenient sets of internal
coordinates, which will be of the form

V (@, 2g,. )=V (al,29,..)+ 3 Ki (ws—af) + 3 D Kij (w—a)) (wj—al )+ .. (1)
i i

has been truncated to the second order terms because of the low accuracy reached
and the obvious advantages offerd to the subsequent calculations.

We have then employed a least squares procedure to obtain the best fit of the
total energy values. The magnitude of the variations of the internal coordinates
was such as not to exceed more than 509, the average displacement of the first
vibrational excited states as caloulated by experimental data.

* All these computations were carried out with a 7090 IBM computer by one of us, R.
Mocora, during his stay at the Laboratory of Molecular Structure and Spectra of the Univer-
sity of Chicago.
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All coefficients have been included except for some particular cases where the
calculations of the molecular energies were not performed for some geometrical
arrangements necessary to obtain a complete system with respect to all the coeffi-
cients.

The potential function so obtained was used to calculate, by the Wilson’s
F-G method [25], the vibrational frequencies. The inverse kinetic energy matrix @
was computed for the theoretical equilibrium configurations*.

To evaluate the derivative of the electric dipole moment with respect to the
internal coordinates a graphic method was employed. In fact it was thought that
a linear approximation would be enough and that little sense would be in the
calculation of the electrical anharmonicity.

The potential functions obtained were used to calculate the interpolated points
of the minima also. For all cases it was found that both the value of the energy
and the geometrical configuration were practically identical to those already
given.

II1. Results

The molecules considered have been divided. in four groups according to their

symmetry. The internal coordinates are defined as variation of the bond lengths

Table 1
Molecule ‘ gfgﬁ; ‘ Rep. Symmetry Coordinates
|
HF
HCI 0001; Z+ S = A?‘
| W | S m 2
H,0 ‘ Co | L 8, = Aoy,
H,S « — o T e e - B
? ! B, | 8, =27 (dr, — Ary)
4 8y =3 (Ar, + Ar, + Ary)
1 S, =872 (Aogy + Aoyy + Aoryg)
gga Cav Saz = 271 (247, — Ary — Ary)
3 L B Sy = 27z (Ary — Ary)
| ; boSee = 271 (240005 — Aoy — Axyy)
E 81y = 271 (Aoyg — Aoxyy)
4, |8, =27 (Ary + Ary + Ay + Ary)
7 Sz = 1272 (2A0cyy + 2A00gy — Avtyy — Aotyy — Aoty — Aoxyy)
CH, I et e e
il e Sse = 271 (Ar, — dry —Ary + Ary)
PHi ‘ Ssy = 271 (Ary, — Ary + Arg — Ary)
4 7 Saz = 271 (Ary + Ary — Arg — Ary)
2 Saz = 27 (Aviyy — Aovyy)
| Say = 27s (Aoegy — Aoys)

| l S1z = 272 (Aorgy — Aoxgy)

* The least squares procedure and subsequent frequency calculation were carried out upon
a Bendix G-20 electronic computer.
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Table 2
HE ‘ HCI
- Cal Exp. ‘ Cal. Exp.
|
\
7e (8. 10.) | 1.730  (1.728) 1.733 2406 (2.404) 2.409
w (em=") " 4518 4137 [13] 3446 2990 [11]
(Ou/o8) (D/A) | 345 +1.6 [14 | 3615 +0.95 [23]
Kyr (erg/em?) | 11.58-10° . 6.857-10°
Table 3
H,0 H,S
Cal. Exp. Cal. Exp.
7o (8. 1) 1.814 1.810 2510 2.525
(1. 814) (2.509)
e 106.39° 105.05° 89400 89.40°
| (108.549) (89.36°)
o, (cm™) |4 3832 [2] 3112 2722 (1]
(om 1) 1364 1648 [2] ! 985 1215 [1]
cm) 4211 3943 [2] | 2198 2733 [1]
5M/as (D/A 1.558 ? 1.864 £0.044 (167
(814/88,) (102D /rd) 1.015 ? 0.137 +0.075 [10]
(8u/885) (DJA) 3.366 +1.3 [3] 2.083 ?
Ko (ergjom?) 1040 <105  5.219-10°
Kot (ergfem?) | 0.246 - 10 { 0.712 - 10
Ko (ergrd2) 0.477 - 101 | 0.498-101
Krs (ergjrd - cm) \ 0.351-1073 . —0.060-10
Table 4
1 NH, | PH,
| Cal. Exp. 1 Cale. Exp.
\ ]
(a. w) 1.924 1.912 . 2613 2.678
(1.928) L (2672)
e 109.16° 106.80° 82.26° 93.17°
(108.90°) (89.80°)
w, (em™) 3672 3506 [9] 2839 2452 [9)
w, (cm™) | 645 1022 9] 902 1041 [9]
w, (em™) I 3874 377[9] | 2791 2457 [9]
w, (cm‘l) ! 1035 1691 [9] ‘ 864 1154 [9]
(5,4/53 ) (D/A) 0.741 +0.396 [16] 0.771 +1.20 {16]
(8u/685) (10~*D/rd) —2.18 +1.53 [16] 0.420 10.65 [16]
(O/685) (D/A) 2.25 +0.178 [16] 143 +0.80 [16]
(8/88,) (105D /rd) — +0.344 [16] — +0.52 [16]
,,,,, e [— R - . [ — - .
K.r (erg/cm?) 8.152 -10° 4259 105
K (ergfem?) —0.0080 - 10 0.0498 - 10°
2 Kyo + Kirar
(erg/cm rd) —0.2083 .10 0.0286-10—3
choc + 2 Kawr
(erg/rd?) 0.2511. 101 0.446 .10~

29%



ExnrIco Menxa, RoBErRTO Moccia and Lucro Ranpaccro:

412

— — -0 $0F00— 11-01-6970°0 (zp1/8a0) wovyy — o3y

— - 11-07-S608°0 -07-L¥8€'0 (sP3/8a0) «wov3y — wo3y

— — e—01"1180°0— ¢-07°28L0°0 (px. wo/B10) 43y — 243y

07-1€5°0 «01-00%°0 01°6988°'¢ 01°SFOT'8 (gwo[Ba0) 14437 ¢ -+ 3T

— — 401-1880°0 <07-9660°0 (cwro/S18) 14437

— — «01-03L'E <01°998°L (guuwo/Bx0) +37

H — 3 — i 3G8°0 [e1] eL8°0F 6%9°0 (pa/s-01) ("s0/9)

: — i — H gIL°0 [r] ges0F LLEG (y/a@) Cgelre)

i — i — [6] 0%6 ¥IL (61 Legr b4 a2 (3—wmo) Y@

¢ — b — 6] 2188 LGG3 [6] 8g1g 0£8¢ (r—wo) fw

i — i — 1) L6 98 [6] Loct 3931 (—wo) P

H 39%% [er] geze $£9¢ 211 Lg2T %995 [6] Lere 60L8 (~wmo) T
("1981) (‘1307) (190 ("1997.)

..Huer_ ..5@9 ..Humn—.. .H«OH_ ..EG.H ..E@.H ..E@'H ...SQ.H 0
(ogL'3) (066'1) (L8L3) (080°3)

89'2 03L'g 9G6°T 066'T 9.3 88L°% L90°g 980°% (‘me)
“dxgp B “dxgyy gi) “dxy ‘TeD “dxyy TeD

fHa LHN HIS YHO
g o[qe],



Calculation of Vibrational Spectra of XHs Type Molecules 413

Ar and the bond angles Ax and they are conveniently combined to give symmetry
coordinates whose definitions are reported in the following Tab. 1 together with
their irreducible representation specifications.

The experimental quantities which we have chosen as comparison are the
vibrational frequencies corrected for anharmonicity and the derivative of the
total electronic dipole moment with respect to the symmetry coordinates. The
harmonic frequencies have been chosen instead of the force constants because the
latter are strongly dependent upon the particular force field employed and upon
the inclusion or not of anharmonicity constants [&].

Anyway we report the force constants calculated together with the other data.
In Tab. 25 all the results obtained are shown. The values of 7, and «, given in
parenthesis are those of the points of expansion. They are so close to the inter-
polated points of minima that the corresponding energy differences are of the
order of magnitude of 10-5 — 10-¢ a. u.

IV. Diseussion

The results reported although qualitatively in fair agreement with the experi-
mental data, quantitively are not very satisfactory. This can be taken as a clear
indication that the vibrational frequency is a very critical property to be calcu-
lated and better wavefunctions are needed. But the amount of data we have
obtained could permit us to draw some useful indication of the most evident
faults of the wavefunctions for such a property, i.e. the rate of change of the
molecular energy with the molecular displacements.

From an inspection of the results it is easy to perceive the general feature that
the stretching modes are higher, the bending modes lower than the experimental
values.

To interpretate this characteristic it is very convenient to use the idea of the
force constant and, due to the low degree of approximation reached, of the diagonal
term only. A suitable formula for the force constants can be derived by the use of
the Hellmann and Feynman theorem [24, 22]. In this case we have

5 (6Vwe 0 8 Ve & Vw
K”:J@&< 8y >df+j?sz 5 T sy (2)

where Vy, represents the total electron-nuclear attraction potential operator,
Vx the nuclear repulsion, z and y stand for any two internal coordinates, o
represents the first order spinless density matrix and the integration is carried on
the spatial electronic variables. It must be understood that all these quantities are
calculated at the equilibrium configuration. It is a simple matter, via perturbation
theory, to show that Eq. (2) is symmetric in x and y [22].

Eq. (2) is suitable to a clear interpretation: the first and the last temrs represent
the contribution to the force constant due to the electric charge distribution, both
electronic and nuclear, considered fixed, while the second term, the relaxion term,
is due to the polarization effect upon the electronic charge distribution. This term
will always be such as to decrease the variation of energy due to the x and y varia-
tions. This means that its sign will be positive for a negative z-y product and
viceversa. In particular it will be negative for the diagonal force constants. This
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is so because the charge redistribution will be such as to obtain an energetically
stabler situation.

For the molecules here treated, the internal coordinates to be considered are
the distance X—H for the stretching force constant and the angle H-X-H for the
bending force constant. We wish to explain why the K,,, the stretching force
constants, are too large while the K, the bending force constants, are too small.
Here we will sketch the analysis which is carried out much more detailed in [22].

A first defect ascribable to the OCE MO SCF method in its limited form is the
poor description of the charge distribution in the regions very close to the protons,
far from expansion center, where it would be determined by a field of atomic
character. Probably the situation is not very serious for the following reasons.

First of all we rewrite Eq. (2) as [22, 24]:

0% Ve 4 o 6 Vxe 0% Vun
Ky = J 0 —dr—3mo(ry) + % 37 dr 5 (3a)
} 8 Ve b0 0 V . »v
Ixmzjg—é—{xgv—dt~3nrog {75) —[—j il dT+Tx;V£' (3b)

(3a)is for the stretching, (3b) for the bending force constants. The terms —%mo(r,)
and —5 7 72 o (r,) are needed for the nuclei are considered point-like [22, 24]. Tt is
evident that the main error in g is due to the charge s which, being determined
by the proton, will be spherically symmetric and will follow it rigidly.

This charge dgs will have the correct behaviour in the region close to the
proton and therefore will be responsable to satisfy the cusp conditions upon it [£].
But this correction dgs will add nothing to (3a) and (3b) because:

0%V we and 0V we
or? So®
upon the proton, will have the expression of irregular spherical harmonics of
degree two and a mixture of two and one respectively [22]. Not containing any
spherical symmetric function they will give zero contribution with dg, to the first
integral terms of (3a) and (3b).

2. The contributions of dgs to the second and third terms of (3a) and (3b) will
compensate each other [22, 24]. As a matter of fact this is a consequence of a more
general theorem [22] which states that the contribution to the force constant of
that part of ¢ (not necessarily spherical) which follows rigidly the moving nucleus
will be zero when evaluated by Eq. (2).

1.

, with respect to a system of axis whose origin is located

Thus it seems reasonable to seek for other reasons to explain the systematic
errors in Ky and K,,. To recognise the quite different situations for X, and X,,,
let us expand both the potential V. and g in series of spherical harmonics centered
at X. After the integration over the angular variables is carried out, the double
series arising in Eq. (2) will reduce to a single series (due to the orthogonality
conditions). For the stretching force constant the series will start obviously with
the monopole while for the bending one this term will necessarily be absent. This
is 80 because the derivation with respect to angular variables of ¥y, will eliminate
its monopole contribution. Thus the series for the bending force constants will
start with the first multipole different from monopole compatible with the molec-
ular symmetry [22]. Owing to the monopole contribution, which in our cases is
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the largest, the expectation value of the field gradient due to the electrons [the
first term of Eq. (2)] for Ky, must be large and negative while for K, it must be
much smaller in absolute value and positive [22]. If p is badly represented around
the protons having a smoother behaviour than what should be, the expectation
value of the field gradient will be smaller in absolute value giving errors of different
signs upon the force constants. To this must be added the error upon the relaxation
term which will be more serious for the stretching motions than for the bending
ones, because p, deriving from a limited one center expansion with fixed basis
functions, will certainly be polarized more easily along the bending motions than
along the stretching ones.

It is understandable therefore why the stretching force constants are higher
while the bending ones are lower than the experimental values. These considera-
tions indicate that the force constants are quantities difficult to calculate because,
unless there is a fortunate compensation of errors [10], we have to reproduce
accurately both the charge distribution and its variations with the internal coor-
dinates. While the first of these quantities can be approximated rather reliably by
a best single detor wavefunctions i.e. by Hartree and Fock wavefunctions, the
second is much more delicate to evaluate.

This situation can be recognised if we remember that the best single electronic
configuration should be changed when varying the internal coordinates [21]. In
our opinion this effect will be much more pronounced for the stretching motion
than for the bending one. Thus increasing the size of the basis set of the OCE SCF
MO method we expect to improve the results more for the bending than for the
stretching force constants. These will still remain too large. The same effect is
encountered for the derivatives of the electric dipole moments, where it is quite
clear, form their too large values, that the low flexibility of p is the main cause for
it.
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